





# Preventive operation for BRCA / Lynch mutation

8<sup>th</sup> March 2024

#### Prof Ranjit Manchanda MD, MRCOG, PhD

Professor of Gynaecological Oncology
Wolfson Institute of Population Health, Queen Mary University of London
Barts Health NHS Trust, Royal London Hospital, UK
Honorary Professor, London School of Hygiene & Tropical Medicine
NHS Innovation Accelerator (NIA) Alumnus









#### Disclosures.....

#### **Research Funding**



























Other Disclosures- Honorarium – MSD, Astrazeneca, GSK, EGL, Israel National Institute for Health Policy Research









| BACKGROUND                   |  |
|------------------------------|--|
| Preventive Surgery in BRCA + |  |
| Preventive Surgery in Lynch  |  |
| SUMMARY                      |  |











#### **International Agency for Research on Cancer**





#### 50% women's cancers

| Cases WORLDWIDE          | Breast<br>Cancer | Ovarian<br>Cancer | Bowel<br>Cancer | Womb<br>(Endometrial)<br>Cancer |
|--------------------------|------------------|-------------------|-----------------|---------------------------------|
| Number of Cases Annually | 2,261,419        | 313,959           | 1,931,590       | 417,367                         |

WORLD

4.9 M cases annually



UK



116,000 cases annually













#### **International Agency for Research on Cancer**





#### **Predicted Rise in Cancer Cases by 2040**

#### **WORLD**



Cases: 27-53%

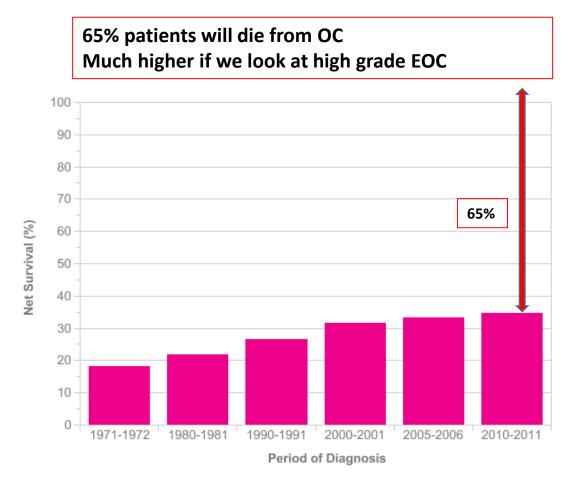
**Deaths: 49-69%** 

UK



Cases: 20-36%

**Deaths: 36-47%** 










#### Ovarian Cancer is a horrible disease ......



Ovarian Cancer (C56 C57.0-C57.7): 1971-2011



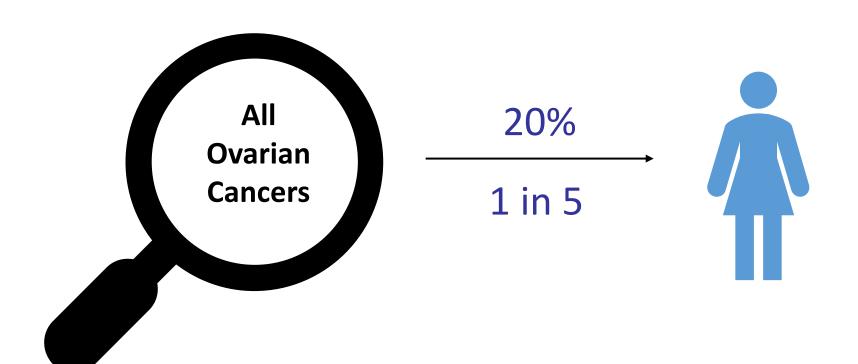











MOST EFFECTIVE STRATEGY: SURGICAL PREVENTION









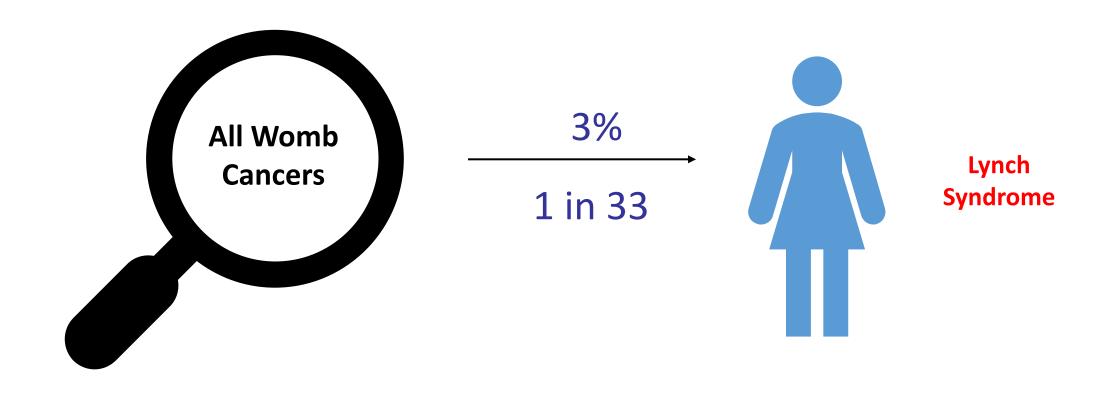


BRCA1
BRCA2

MLH1 MSH2 MSH6 PMS2

Lynch Syndrome

PALB2 RAD51C RAD51D BRIP1


Other Genes

















20% Ovarian Cancers4% Breast Cancers3% Womb Cancers4% Bowel Cancers

~1% women in the general population may have one of these cancer genes

| Breast | Ovary  | Bowel | Endometrial |
|--------|--------|-------|-------------|
| BRCA1  | BRCA1  | MLH1  | MLH1        |
| BRCA2  | BRCA2  | MSH2  | MSH2        |
| PALB2  | PALB2  | MSH6  | MSH6        |
| RAD51C | RAD51C | PMS2  | PMS2        |
| RAD51D | RAD51D | EPCAM |             |
| CHEK 2 | BRIP1  |       |             |
| ATM    | MLH1   |       |             |
| BARD1  | MSH2   |       |             |
|        | MSH6   |       |             |
|        |        |       |             |

POTENTIALLY
PREVENTABLE









#### **GERMLINE**

**TUMOUR (SOMATIC)** 

**BRCA1** 

BRCA2

HRD assay/test

#### **OVARIAN CANCER GENES**

BRCA1 BRIP1
BRCA2 PALB2
RAD51C RAD51D

MMR: Lynch Syndrome Genes MLH1, MSH2, MSH6

#### **WOMB CANCER GENES**

MLH1 MSH2

MSH6 PMS2

NHS

National Genomic Test Directory

Testing Criteria for Rare and Inherited Disease

GUIDELINES RECOMMEND TESTING FOR THESE GENES

V3.1 August 2022 (Official)









#### **Lynch Syndrome**

|                                           | Cancer risks (%) |                   |                    |  |  |  |  |  |  |  |
|-------------------------------------------|------------------|-------------------|--------------------|--|--|--|--|--|--|--|
| GENE                                      | Ovarian cancer   | Colorectal cancer | Endometrial cancer |  |  |  |  |  |  |  |
| MLH1                                      | 11               | 48                | 37                 |  |  |  |  |  |  |  |
| MSH2                                      | 17               | 47                | 49                 |  |  |  |  |  |  |  |
| MSH6                                      | 11               | 20                | 41                 |  |  |  |  |  |  |  |
| PMS2                                      | 3%               | 10                | 13                 |  |  |  |  |  |  |  |
| General population risk (no altered gene) | 2%<br>(1 in 50)  | 5.6%<br>(1 in 18) | 2.7%<br>(1 in 36)  |  |  |  |  |  |  |  |

Prospective Lynch Syndrome Database, Moller, et al. 2020









| GENE                       | Ovarian Cancer Risk | Breast Cancer Risk |
|----------------------------|---------------------|--------------------|
| BRCA1                      | 44%                 | 77%                |
| BRCA2                      | 17%                 | 69%                |
| RAD51C                     | 11%                 |                    |
| RAD51D                     | 13%                 |                    |
| BRIP1                      | ~8%                 |                    |
| PALB2                      | 5%                  | 53%                |
| MLH1                       | 11%                 |                    |
| MSH2                       | 17%                 |                    |
| MSH6                       | 11%                 |                    |
| General<br>Population Risk | 1.3-2%              | 12-15%             |







**RRSO: RISK REDUCING SALPINGO-OOPHORECTOMY** 

**REMOVING BOTH TUBES & OVARIES** 

**HYSTERECTOMY AND BILATERAL SALPINGO-OOPHORECTOMY** 

**REMOVING UTERUS + BOTH TUBES & OVARIES** 

**RRESDO: RISK REDUCING EARLY SALPINGECTOMY** 

**BOTH TUBES FIRST** 

**NEW 2 STAGE OPTION:** + DELAYED OOPHORECTOMY **BOTH OVARIES LATER** 

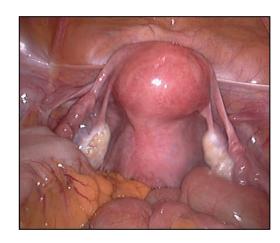


**BROADENING ACCESS TO SURGICAL PREVENTION** 










**Removing Tubes and Ovaries:** 

**Most effective method to reduce Ovarian Cancer risk** 

Keyhole surgery, Washings for cytology

~ 80-97% reduction in Ovarian Cancer Incidence



**Reduction in Deaths from Ovarian Cancer (Mortality)** 

**Reduction in deaths overall (all-cause)** 

**Reduces Anxiety and Ovarian Cancer worry** 

No change in General Quality of Life









ELSEVIER

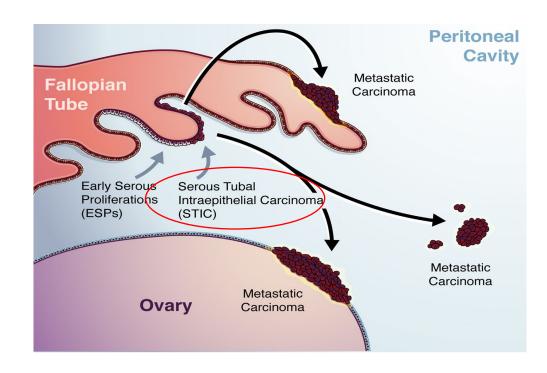
Contents lists available at ScienceDirect

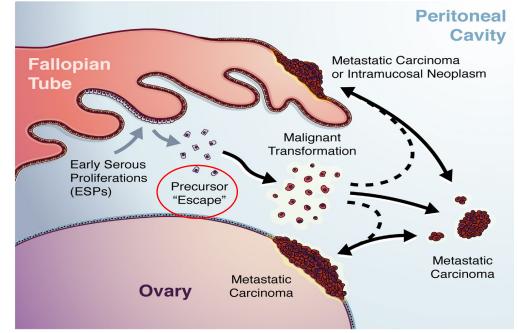
#### Gynecologic Oncology

journal homepage: www.elsevier.com/locate/ygyno



Gynecol Oncol 2019


Review Article

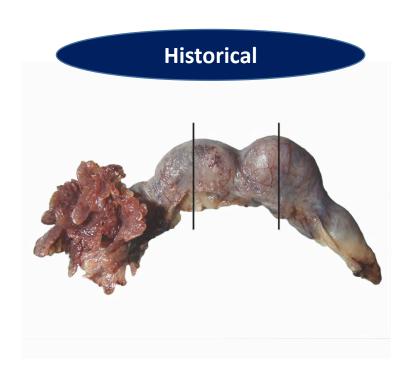

The fallopian tube, "precursor escape" and narrowing the knowledge gap to the origins of high-grade serous carcinoma

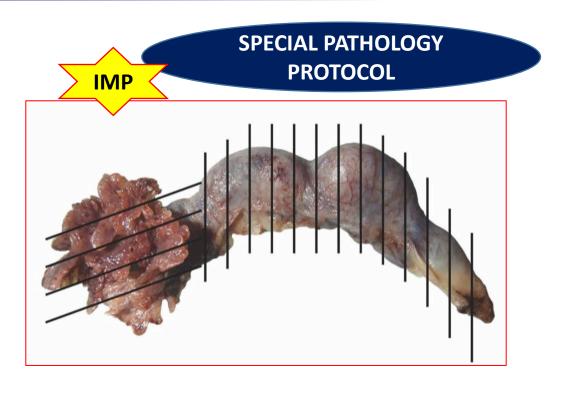


Thing Rinda Soong <sup>a</sup>, Brooke E. Howitt <sup>b</sup>, Neil Horowitz <sup>c</sup>, Marisa R. Nucci <sup>d</sup>, Christopher P. Crum <sup>d,\*</sup>













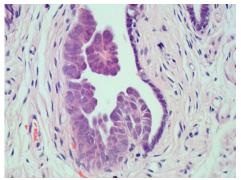




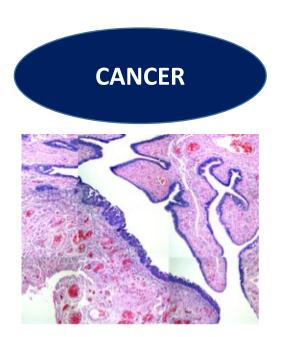

#### SEEFIM PROTOCOL-Sectioning and Extensively Examining the FIMbriated end of the Fallopian Tube

**ESSENTIAL** 










Serous Tubal Intraepithelial Carcinoma = STIC







1:20 Individuals

Normal scan and Ca125

**SEEFIM ESSENTIAL** 









#### **Other Points**

70% these lesions are Tubal

## Small residual chance of Peritoneal cancer over 20 yrs

2-4% Finch 2014 J Clin Oncol 0% Marcinkute 2021 JMG (Manchester)

| Presence of STIC | 5 Year | 10 Year |
|------------------|--------|---------|
| STIC             | 10.5%  | 27.5%   |
| No STIC          | 0.3%   | 0.9%    |

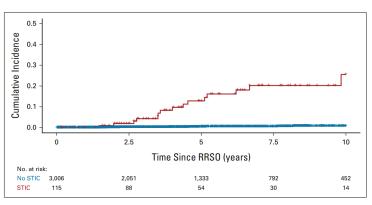



FIG 2. Kaplan-Meier plot to visualize the occurrence of peritoneal carcinomatosis after RRSO. RRSO, risk-reducing salpingo-oophorectomy, STIC, serous tubal intraepithelial carcinoma.

Risk of Peritoneal Carcinomatosis After Risk-Reducing Salpingo-Oophorectomy: A Systematic Review and Individual Patient Data Meta-Analysis

JCO Feb 2022

Micanda P. Steenbeek, MD<sup>1</sup>; Mujke H.D. van Bermel, MD<sup>1</sup>; Johan Bulten, MD, PhD<sup>2</sup>; Julia A. Hulsmann, MD<sup>1</sup>; Joep Bogaerts, MD<sup>2</sup>; Christine Garcia, MD, PhD<sup>3</sup>; Han T. C.I., MD, PhD<sup>3</sup>; Keene H. Lu, MD, PhD<sup>3</sup>; Helen J. van Beekehuizen, MD, PhD<sup>3</sup>; Lucas Minig, MD, PhD<sup>4</sup>; Katja N. Gaarenstroom, MD, PhD<sup>3</sup>; Marielle Niobbenhuis, MD, PhD<sup>3</sup>; Mateja Krajc, MD, PhD<sup>3</sup>; Williss Rudalits, MD, PhD<sup>3</sup>; Barbara M., Norquist, MD, PhD<sup>3</sup>; Licabeth M. Swisher, MD, PhD<sup>3</sup>; Marian J.E. Mourits, MD, PhD<sup>1</sup><sup>3</sup>; Loon F.A.G. Massuger, MD, PhD<sup>3</sup>; Nicoline Hoogerbrugge, MD, PhD<sup>3</sup>; Rosella P.M.G. Hermens, PhD<sup>3</sup>\*; Joanna IntHout, PhD<sup>3</sup>; and Joanne A. de Hulliu, MD, PhD<sup>3</sup>









**Important issues** 

**Fertility** 

Age

**Gene, Cancer Risk** 

**Premature Surgical Menopause: implications** 

HRT









#### **IMPACT ON BC RISK**

Initially multiple studies: Up to a 50% reduction BC incidence in premenopausal women Recently become controversial: Many Studies showing no benefit

Systematic Review

Breast Cancer Risk and Breast-Cancer-Specific Mortality Following Risk-Reducing Salpingo-Oophorectomy in *BRCA* Carriers: A Systematic Review and Meta-Analysis

Faiza Gaba <sup>1,2</sup>, Oleg Blyuss <sup>3,4</sup>, Alex Tan <sup>3</sup>, Daniel Munblit <sup>4,5,6</sup>, Samuel Oxley <sup>2,3</sup>, Khalid Khan <sup>7</sup>, Rosa Legood <sup>8</sup> and Raniit Manchanda <sup>2,5,8,9,10,\*</sup>

Reduction of Breast Cancer risk in *BRCA2*-carriers alone

(RR=0.63, 95%CI:0.41-0.97)

Reduction Deaths from breast cancer in BC-affected *BRCA1* carriers

(RR=0.46, 95%CI:0.30-0.70)

21 RRSOs to prevent one breast cancer in *BRCA2*-carriers 6 RRSOs - Prevent one BC-death in *BRCA1*-&-*BRCA2*-carriers

#### **META ANALYSIS**

| Study                                | Experim<br>Events |         |     | ontrol<br>Total |      | Ris                  | k Rat | io |   | RR   | 95%-CI       | Weight |
|--------------------------------------|-------------------|---------|-----|-----------------|------|----------------------|-------|----|---|------|--------------|--------|
| Domchek 2010                         | 7                 | 100     | 94  | 401             | - 10 |                      |       |    |   | 0.30 | [0.14; 0.62] | 19.4%  |
| Kotsopoulos 2017                     | 21                | 355     | 36  | 370             | -    |                      | -     |    |   | 0.61 | [0.36; 1.02] | 27.3%  |
| Mavaddat 2020                        | 51                | 497     | 79  | 546             |      | -                    | Н     |    |   | 0.71 | [0.51; 0.99] | 35.7%  |
| Marcinkute 2021                      | 8                 | 144     | 19  | 403             |      |                      | -     |    |   | 1.18 | [0.53; 2.63] | 17.5%  |
| Random effects model                 |                   | 1096    |     | 1720            |      | $\rightleftharpoons$ | >     |    |   | 0.63 | [0.41; 0.97] | 100.0% |
| Heterogeneity: $I^2 = 55\%$ , $\tau$ | r = 0.1058        | , p = 0 | .08 |                 | '    | _'_                  |       | '  | _ |      |              |        |
|                                      |                   |         |     |                 | 0.2  | 0.5                  | 1     | 2  | 5 |      |              |        |

J: Breast-cancer-specific mortality following RRSO in breast-cancer-affected BRCA1 carriers

|                                                               | Experimen | ntal C                    | ontrol |            |      |                              |                |
|---------------------------------------------------------------|-----------|---------------------------|--------|------------|------|------------------------------|----------------|
| Study                                                         | Events To | tal Events                | Total  | Risk Ratio | RR   | 95%-CI                       | Weight         |
| Domchek 2010<br>Huzarski 2013                                 |           | 597 51<br>1 <b>1</b> 5 22 |        | -          |      | [0.22; 0.66]<br>[0.31; 1.11] | 56.6%<br>43.4% |
| Random effects model<br>Heterogeneity: $I^2 = 4\%$ , $\tau^2$ |           | 8 <b>12</b><br>= 0.31     | 953    | 0.5 1 2    | 0.46 | [0.30; <b>0</b> .70]         | 100.0%         |









#### **HYSTERECTOMY: YES or NO?**

#### **OUR VIEW + TRADITIONAL VIEW: NOT ROUTINELY UNLESS OTHER INDICATION**

#### **PROPONENTS:**

Avoids smears
Estrogen alone HRT
In patients on tamoxifen



Not a Strong enough Clinical Rationale

**BRCA1 & Serous EC Risk? - Recent studies** 

Saule JNCI 2018 Shu, Kauff 2016 Jama Oncol Laitman Cancer 2018 Kitson 2020 EJC **Increased Serous EC risk** 

No increase in serous EC risk

Small number cases 2-5, Wide CI Only 7% EC Overall EC risk not increased

**More Corroboratory evidence is needed** 











Original Investigation | Genetics and Genomics

#### Cost-Effectiveness of Gene-Specific Prevention Strategies for Ovarian and Breast Cancer

Xia Wei, MSc; Li Sun, PhD; Eric Stade, MSc; Cattlin T. Fierheiler, PhD; Samuel Oxley, MRCOG; Ashwin Kaira, MBBS; Jacqueline Sia, MRCOG; Michail Sideris, PhD; W. Glenn McCluggage, FRCPath; Nathan Bromham, PhD; Katharina Dworzynski, PhD; Adam N. Rosenthal, PhD; Adam Brentrall, PhD; Stephen Duffy, PhD; D. Gareth Evens, PhD; Li Yang, PhD; Rosa Legood, PhD; Ranjit Manchanda, MD, PhD

**CSG-specific strategies** 

Screening
Surgery
Medical prevention

BRCA1: RRSO @35 ; RRM @30

BRCA2: RRSO @35-40 ; RRM @30

PALB2: RRSO @45 ; RRM @40

RAD51C/RAD51D: RRSO @45

BRIP1: RRSO @45









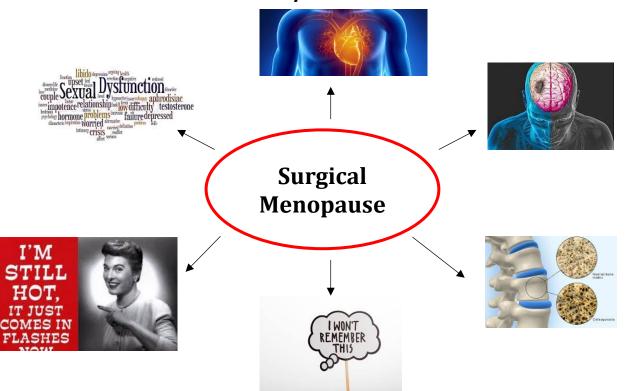
#### Base case

Population impact of risk-reducing surgery for preventing cancer (per 1,000 pathogenic variant carriers)

| Strategy                                                                    | BC cases | BC deaths | OC cases | OC deaths | BC cases prevented | BC deaths prevented | OC cases<br>prevented | OC deaths prevented |
|-----------------------------------------------------------------------------|----------|-----------|----------|-----------|--------------------|---------------------|-----------------------|---------------------|
| BRCA1                                                                       |          |           |          |           | processes.         | protontou           | protontou             | <u> protontou</u>   |
| High-risk BC surveillance and tamoxifen from age 30*                        | 601      | 63        | 412      | 253       |                    |                     |                       |                     |
| RRM at age 30                                                               | 83       | 11        | 423      | 260       | -518               | -52                 | 11                    | 6                   |
| RRSO at age 35 with high-risk BC surveillance and tamoxifen from age 30     | 710      | 56        | 24       | 7         | 108                | -7                  | -388                  | -246                |
| RRM at age 30 with RRSO at age 35                                           | 65       | 7         | 25       | 8         | -536               | -56                 | -387                  | -246                |
| BRCA2                                                                       |          |           |          |           |                    |                     |                       |                     |
| High-risk BC surveillance and tamoxifen from age 30*                        | 630      | 74        | 171      | 106       |                    |                     |                       |                     |
| RRSO at age 35 with high-risk BC surveillance and tamoxifen from age 30     | 549      | 33        | 7        | 2         | -80                | -41                 | -164                  | -103                |
| RRM at age 30                                                               | 91       | 15        | 174      | 107       | -539               | -59                 | 3                     | 2                   |
| RRM at age 30 with RRSO at age 35                                           | 65       | 5         | 7        | 2         | -565               | -69                 | -163                  | -103                |
| PLAB2                                                                       |          |           |          |           |                    |                     |                       |                     |
| High-risk BC surveillance and tamoxifen from age 30*                        | 481      | 109       | 46       | 30        |                    |                     |                       |                     |
| RRM at age 40                                                               | 77       | 18        | 47       | 30        | -404               | -91                 | 0                     | 0                   |
| RRSO at age 45 with high-risk BC surveillance and tamoxifen from age 30     | 402      | 40        | 4        | 2         | -79                | -69                 | -42                   | -28                 |
| RRM at age 40 with RRSO at age 45                                           | 59       | 7         | 4        | 1         | -422               | -102                | -42                   | -28                 |
| RAD51C                                                                      |          |           |          |           |                    |                     |                       |                     |
| Moderate-risk BC surveillance and tamoxifen from age 40*                    | 188      | 53        | 108      | 66        |                    |                     |                       |                     |
| RRSO at age 45 with moderate-risk BC surveillance and tamoxifen from age 40 | 238      | 48        | 6        | 2         | 50                 | -6                  | -102                  | -64                 |
| RAD51D                                                                      |          |           |          |           |                    |                     |                       |                     |
| Moderate-risk BC surveillance and tamoxifen from age 40*                    | 174      | 48        | 124      | 78        |                    |                     |                       |                     |
| RRSO at age 45 with moderate-risk BC surveillance and tamoxifen from age 40 | 220      | 43        | 6        | 2         | 46                 | -5                  | -118                  | -76                 |
| BRIP1                                                                       |          |           |          |           |                    |                     |                       |                     |
| No surgery*                                                                 | /        | /         | 63       | 40        | /                  | /                   |                       |                     |
| RRSO at age 45                                                              | /        | /         | 7        | 3         | /                  | /                   | -55                   | -37                 |






Sexual DysFn

**VMS** 





### Inc CV risk CV mortality: NNH 1:33 without HRT



Neurocognitive problems: Parkinsons, Dementia

Osteoporosis

#### **HRT Until Age 51, Unless Any Contraindications**



Contents lists available at ScienceDirect

Best Practice & Research Clinical Obstetrics and Gynaecology

journal homepage: www.elsevier.com/locate/bpobgyn



Systematic review of acceptability, cardiovascular, neurological, bone health and HRT outcomes following risk reducing surgery in *BRCA* carriers













Manchester Barts UCLH Guys Cambridge Dundee

683 BRCA women



2020

Attitudes towards risk-reducing early salpingectomy with delayed oophorectomy for ovarian cancer prevention: a cohort study



89% premenopausal vs 95% postmenopausal Satisfaction with RRSO

9.4% premenopausal vs 1% postmenopausal Regretted RRSO



- RRESDO high acceptability 69%
- 38% RRSO women would have opted for RRESDO in retrospect
- Concerned about sexual-dysfunction- RRESDO TWICE AS acceptable
- Women who prioritise greater reduction in OC risk: prefer RRSO



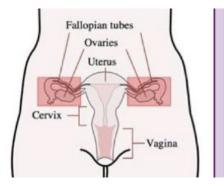




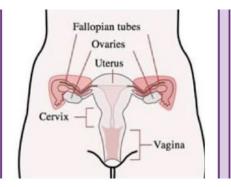




2 step – tubes and then ovaries Tubes &


**ovaries** 

Control


PROTECTOR Study Recruitment

N = 1250

#### **Multicentre Prospective Study**



Risk reducing salpingo-oophorectomy (RRSO)



Risk reducing early salpingectomy followed by delayed oophorectomy (RRESDO)



No surgery (Control)

#### **Participants Self-Select Study Arm**











RRESDO offers women delaying/declining premenopausal oophorectomy, particularly those concerned about menopausal effects, a degree of ovarian cancer risk reduction whilst avoiding premature menopause

#### **TUBA Study**

JAMA Oncology | Original Investigation

Association of Salpingectomy With Delayed Oophorectomy
Versus Salpingo-oophorectomy With Quality of Life
in BRCA1/2 Pathogenic Variant Carriers
A Nonrandomized Controlled Trial

EARLY SALPINGECTOMY HAS IMPROVED MENOPAUSAL SYMPTOMS & SEXUAL FUNCTION COMPARED TO RRSO









## Experiences of women following risk-reducing early-salpingectomy and delayed-oophorectomy and salpingo-oophorectomy on the PROTECTOR trial: a qualitative study

#### **Decision making**

- High satisfaction and low decision regret
- RRES enabled participants to benefit from risk-reduction sooner than otherwise
- Control of DO timing is essential. Patients value annual follow-up to answer concerns, discuss timing and HRT
- The decision for DO is more difficult patients need more support

#### Menopause management

- Patients desire adequate pre-op counselling and post-op management often the major determinant of satisfaction
- Strongly prefer specialist advice

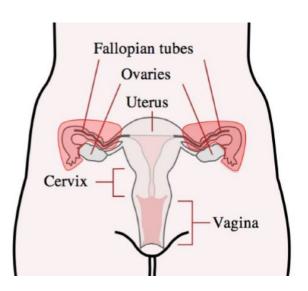
#### **STIC**

- Uncertainty over risks, heightened cancer worry, desire for follow-up/ monitoring.
- Particularly grateful for risk-reducing surgerY












## What We Don't Know about early salpingectomy or removal of tubes

#### **Level of Reduction in Cancer Risk**

**How best to manage STIC?** 



Impact on long term hormonal function and menopause

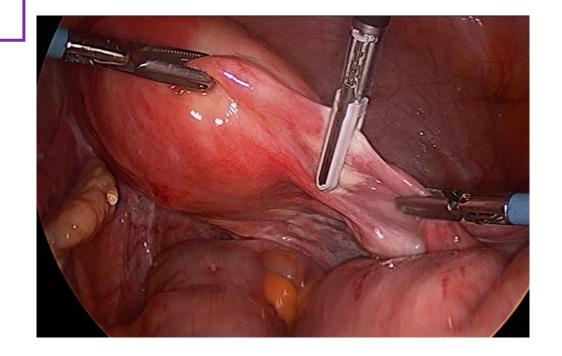
RRESDO should only be offered in a research study (UK CGG, RCOG, NICE)










## **Lynch Syndrome: Surgical Prevention**

HYSTERECTOMY +
BILATERAL SALPINGO
OOPHORECTOMY

REMOVAL OF UTERUS, TUBES AND OVARIES

**REMOVAL OF UTERUS** 

MLH1, MSH2, REMOVAL OF UTERUS, TUBES AND OVARIES





PMS2







Age of Surgery-35-40 years onwards

**Usually Minimal Access** 

As complete protection as possible

Genetics inMedicine

Check for

#### ARTICLE

Risk-reducing hysterectomy and bilateral salpingooophorectomy in female heterozygotes of pathogenic mismatch repair variants: a Prospective Lynch Syndrome Database report

Mev Dominguez-Valentin, PhD D Emma J. Crosbie, PhD, MRCOG et al."









### National Institute for Health and Care Excellence











#### **Key Messages**

Removal of tubes & ovaries is the most effective strategy to prevent ovarian cancer

It can be offered for a number of ovarian cancer genes - >5% lifetime risk

**SEEFIM special pathology protocol is essential for RRSO** 

HRT till 51 for premenopausal RRSO if no other contraindication

Removal of Uterus, tubes and ovaries – effective in women with Lynch Syndrome

Surgical prevention needs to be personalised depending on gene, age, risk, fertility, personal wishes, etc.

Early Salpingectomy should be undertaken in a research study only





## w?men's

precision prevention













### THANK YOU







